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"Static” Nature of Programs

* Programs are very static and rigid

- They do not quite adapt to runtime scenarios

per se
* Rely on out-of-order execution in some cases

* More and more programs have increasing
resources available to them
- Compiler technology is not that great

- Proebsting's Law: compilers double the
performance of "typical” programs every 18
years

- What to do with all that silicon?



Helper Threads

* Recent architectures with multiple
execution contexts (SMT, CMP) allow
processors to exploit parallelism in control-
independent instruction streams

» Can we use thread contexts to "help” the
program run better?
- Speedup up single-thread workloads

- Since 2001, lots of papers on the topic
- ISCA, Micro, PLDT and most recently CGO
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Problems With Helper Threads

- Non-trivial overhead
-Launching threads

-Context switching and scheduling non-

determinism
* SMT can help but it's not enough

- With specialized architectural support,

overhead can be reduced to ~1500 cycles

* D. Kim, S. Liao, P. Wang, J. Cuvillo, X. Tian, X. Zou, H. Wang, D.
Yeung, M. Gikar, and J. Shen. Physical experimentation with

prefetching helper threads on Intel's Hyper-Threaded
processors. CGO 2004.



More Problems With Helper Threads

» Synchronization with the main thread
-Is the helper thread still helping?

-Is thread throttling and runtime
adaptation possible?

* Are threads really a commodity?

- Shouldn't we use threads for real
parallelism instead?



Better Ideas?

» IPC for many benchmarks (e.g., SPEC INT) is low

- On VLIW architectures, it isn't much greater than

one-way parallelism

» Ttanium 2 is a 6-issue processor with 256 registers

* With SMT (hyperthreading) used for helper threads,
resource utilization is not a whole lot better (~2 ?)

* VLIW mentality: expose architecture

- Can a compiler embed the helper thread instructions
within the main (host) program?

* Why not?
- PEPSE: program embedded precomputation via
speculative execution
- Some drawbacks as you'll see later... but there is hope



PEPSE Overview

» Identify precomputation chain
- For prefetching, what address to fetch from?

- Inspect program dependence graph and

identify load dependence chain (LDC)
» Subset that computes the address

Rl = &list

R5 = 0
lToop:
wi: RZ2 = R1 + 4
wa: R3 = *[R2]
wi: R4 = R1L + &
ws: R1 = *[R4] # problem load
s: R5 = R5 + R3

/e
we: br loop (R1 !'= NULL)
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PEPSE Example

- "Steal” available resources to schedule the
operations in the load dependence chain

The load in wy is delinquent. Its LDC is:
p: R1 = *[R4] # second LDC operation
m: R4 = R1L + 8 # first LDC operation
R1 = &list
R = 0
loop:
wi: RZ = R1 + 4;
w2 R3 = *[RZ2]
wi: R4 = Rl + 8
we: RL = *[R4]
ws: RS = R5> + R3;
we: br loop (R1 '— NULL)
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PEPSE Example

- "Steal” available resources to schedule the
operations in the load dependence chain

The load in wy is delinquent. Its LDC is:
p: R1 = *[R4] # second LDC operation
m: R4 = R1L + 8 # first LDC operation
R1 = &list
R = 0
| R6 = R1 + 8 |
loop:
wy: R2 = R1 + 4 2 R7 = *[RG]
wa: R3 = *[RZ2]
wy: R4 = R1 + 8
ws: RL = *[R4]
ws: RS> = R> + R3; pi: Rb = R1L + 8
we: br loop (R1 !'= NULL)



Preliminary Itanium 2 Results

* Implemented prototype algorithm in ORC
for Itanium Processor Family
- Open-source parallelizing compiler

- Used scientific benchmark set

* SPEC FP (SPEC INT results later)
* Lots of available resources to exploit

- Compared results against
* Built-in prefetching (Mowry's thesis)
- Software pipelining

» Compared to the best ORC baseline, PEPSE

reduces total runtime of 9 benchmarks by
13 minutes (27%)
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PEPSE vs. Helper Threads

* Most significant difference: program
counters

- Helper threads have a dedicated PC

- PEPSE is part of the main program instruction
stream and shares the PC

* When is this a problem?

LD rl1=[r0] # cache miss - As long precomputation
is on-path, visible effect
ADDrl=r1 4 # processor stalls is shifting stalls to

LD r2=[rl] occur earlier in time



What Now?

* Precomputation must adapt
- Abandon when it appears not profitable

L.D rl = [rO] # cache miss
;\.DD rl=rl, 4 # want to ignore this operation

LD r2=1[rl] # and this one

* Use predication

» SPEAR: sentineled precomputation for
EPIC architectures

15



16

SPEAR Example

* Precomputation must adapt
- Abandon when it appears not profitable

il':D rl=[rO] # informing load, on cache miss, p < 1

ADD r1 = rl,4 if —-p # conditionally issue this operation
LD r2=[rl] if —-p # and this one

* Program adapts to runtime behavior

» Architecture cooperates with the program

to provide important runtime information
- Must cheaper than threads, many ISA tricks apply
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Preliminary Results

* Implemented prototype system using
Trimaran
- Open source compiler for VLIW research

- Cycle accurate simulator configured to
resemble an Ttanium processor

- Used SPEC INT and SPEC FP benchmarks
* As might be expected, SPEAR has little advantage
for array codes
* In integer (pointer heavy) codes, 13% additional
improvement over PEPSE
» Can reduce processor stalls 45% on average and
70% or more in the best cases



Room To Improve

* Overlapping precomputation chains

- Reinforcement in data dependent
precomputation

* Hybrid chains

- Investment vs. Payoff in precomputation chain

L'D rl = [rO] # cache miss, costs 7 cycles

ADD r1 = rl, 4 # wait for result
LD r2=[rl] # issue prefetch, save 5 cycles .
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Other ACE Applications

* Branch prediction
- Tackle data-dependent branches

- Hopeless for deep pipelines
* Have to precompute results 30+ cycles in advances
* Branch condition usually on the critical path

- But processors are changing
* Ttanium 2 has an 8-stage pipeline
* There is hopel

* Other examples
- Address disambiguation
- Voltage scaling
- Resource allocation (wait for Dave's talk)



Thanksl



