Adaptive and Cooperative Execution
Rodric M. Rabbah

parts of this talk are based on an ASPLOS 04 paper with
Sandanagobalane, Ekpanyapong, and Wong

MIT Computer Architecture Workshop 2004

"Static” Nature of Programs

* Programs are very static and rigid

- They do not quite adapt to runtime scenarios

per se
* Rely on out-of-order execution in some cases

* More and more programs have increasing
resources available to them
- Compiler technology is not that great

- Proebsting's Law: compilers double the
performance of "typical” programs every 18
years

- What to do with all that silicon?

Helper Threads

* Recent architectures with multiple
execution contexts (SMT, CMP) allow
processors to exploit parallelism in control-
independent instruction streams

» Can we use thread contexts to "help” the
program run better?
- Speedup up single-thread workloads

- Since 2001, lots of papers on the topic
- ISCA, Micro, PLDT and most recently CGO

Helper Thread Example - Prefetching

Helper Thread Example - Prefetching

Helper Thread Example - Prefetching

Main Helper

Problems With Helper Threads

- Non-trivial overhead
-Launching threads

-Context switching and scheduling non-

determinism
* SMT can help but it's not enough

- With specialized architectural support,

overhead can be reduced to ~1500 cycles

* D. Kim, S. Liao, P. Wang, J. Cuvillo, X. Tian, X. Zou, H. Wang, D.
Yeung, M. Gikar, and J. Shen. Physical experimentation with

prefetching helper threads on Intel's Hyper-Threaded
processors. CGO 2004.

More Problems With Helper Threads

» Synchronization with the main thread
-Is the helper thread still helping?

-Is thread throttling and runtime
adaptation possible?

* Are threads really a commodity?

- Shouldn't we use threads for real
parallelism instead?

Better Ideas?

» IPC for many benchmarks (e.g., SPEC INT) is low

- On VLIW architectures, it isn't much greater than

one-way parallelism

» Ttanium 2 is a 6-issue processor with 256 registers

* With SMT (hyperthreading) used for helper threads,
resource utilization is not a whole lot better (~2 ?)

* VLIW mentality: expose architecture

- Can a compiler embed the helper thread instructions
within the main (host) program?

* Why not?
- PEPSE: program embedded precomputation via
speculative execution
- Some drawbacks as you'll see later... but there is hope

PEPSE Overview

» Identify precomputation chain
- For prefetching, what address to fetch from?

- Inspect program dependence graph and

identify load dependence chain (LDC)
» Subset that computes the address

Rl = &list

R5 = 0
lToop:
wi: RZ2 = R1 + 4
wa: R3 = *[R2]
wi: R4 = R1L + &
ws: R1 = *[R4] # problem load
s: R5 = R5 + R3

/e
we: br loop (R1 !'= NULL)

10

PEPSE Example

- "Steal” available resources to schedule the
operations in the load dependence chain

The load in wy is delinquent. Its LDC is:
p: R1 = *[R4] # second LDC operation
m: R4 = R1L + 8 # first LDC operation
R1 = &list
R = 0
loop:
wi: RZ = R1 + 4;
w2 R3 = *[RZ2]
wi: R4 = Rl + 8
we: RL = *[R4]
ws: RS = R5> + R3;
we: br loop (R1 '— NULL)

12

PEPSE Example

- "Steal” available resources to schedule the
operations in the load dependence chain

The load in wy is delinquent. Its LDC is:
p: R1 = *[R4] # second LDC operation
m: R4 = R1L + 8 # first LDC operation
R1 = &list
R = 0
| R6 = R1 + 8 |
loop:
wy: R2 = R1 + 4 2 R7 = *[RG]
wa: R3 = *[RZ2]
wy: R4 = R1 + 8
ws: RL = *[R4]
ws: RS> = R> + R3; pi: Rb = R1L + 8
we: br loop (R1 !'= NULL)

Preliminary Itanium 2 Results

* Implemented prototype algorithm in ORC
for Itanium Processor Family
- Open-source parallelizing compiler

- Used scientific benchmark set

* SPEC FP (SPEC INT results later)
* Lots of available resources to exploit

- Compared results against
* Built-in prefetching (Mowry's thesis)
- Software pipelining

» Compared to the best ORC baseline, PEPSE

reduces total runtime of 9 benchmarks by
13 minutes (27%)

14

PEPSE vs. Helper Threads

* Most significant difference: program
counters

- Helper threads have a dedicated PC

- PEPSE is part of the main program instruction
stream and shares the PC

* When is this a problem?

LD rl1=[r0] # cache miss - As long precomputation
is on-path, visible effect
ADDrl=r1 4 # processor stalls is shifting stalls to

LD r2=[rl] occur earlier in time

What Now?

* Precomputation must adapt
- Abandon when it appears not profitable

L.D rl = [rO] # cache miss
;\.DD rl=rl, 4 # want to ignore this operation

LD r2=1[rl] # and this one

* Use predication

» SPEAR: sentineled precomputation for
EPIC architectures

15

16

SPEAR Example

* Precomputation must adapt
- Abandon when it appears not profitable

il':D rl=[rO] # informing load, on cache miss, p < 1

ADD r1 = rl,4 if —-p # conditionally issue this operation
LD r2=[rl] if —-p # and this one

* Program adapts to runtime behavior

» Architecture cooperates with the program

to provide important runtime information
- Must cheaper than threads, many ISA tricks apply

17

Preliminary Results

* Implemented prototype system using
Trimaran
- Open source compiler for VLIW research

- Cycle accurate simulator configured to
resemble an Ttanium processor

- Used SPEC INT and SPEC FP benchmarks
* As might be expected, SPEAR has little advantage
for array codes
* In integer (pointer heavy) codes, 13% additional
improvement over PEPSE
» Can reduce processor stalls 45% on average and
70% or more in the best cases

Room To Improve

* Overlapping precomputation chains

- Reinforcement in data dependent
precomputation

* Hybrid chains

- Investment vs. Payoff in precomputation chain

L'D rl = [rO] # cache miss, costs 7 cycles

ADD r1 = rl, 4 # wait for result
LD r2=[rl] # issue prefetch, save 5 cycles .

18

Room To Improve

* Overlapping precomputation chains

- Reinforcement in data dependent
precomputation

* Hybrid chains

- Investment vs. Payoff in precomputation chain

L'D rl = [rO] # cache miss, wait 5 cycles

ADD r1 = rl, 4 # wait for result
LD r2=[rl] # issue prefetch, save 7 cycles .

19

20

Other ACE Applications

* Branch prediction
- Tackle data-dependent branches

- Hopeless for deep pipelines
* Have to precompute results 30+ cycles in advances
* Branch condition usually on the critical path

- But processors are changing
* Ttanium 2 has an 8-stage pipeline
* There is hopel

* Other examples
- Address disambiguation
- Voltage scaling
- Resource allocation (wait for Dave's talk)

Thanksl

