
1

Adaptive and Cooperative Execution
Rodric M. Rabbah

parts of this talk are based on an ASPLOS 04 paper with
Sandanagobalane, Ekpanyapong, and Wong

MIT Computer Architecture Workshop 2004



2

“Static” Nature of Programs
• Programs are very static and rigid

– They do not quite adapt to runtime scenarios 
per se

• Rely on out-of-order execution in some cases

• More and more programs have increasing 
resources available to them

– Compiler technology is not that great
– Proebsting’s Law: compilers double the 

performance of “typical” programs every 18 
years

– What to do with all that silicon?



3

Helper Threads
• Recent architectures with multiple 
execution contexts (SMT, CMP) allow 
processors to exploit parallelism in control-
independent instruction streams

• Can we use thread contexts to “help” the 
program run better?

– Speedup up single-thread workloads
– Since 2001, lots of papers on the topic

• ISCA, Micro, PLDI and most recently CGO



4

Helper Thread Example – Prefetching



5

Helper Thread Example – Prefetching



6

Helper Thread Example – Prefetching



7

Problems With Helper Threads
•Non-trivial overhead

–Launching threads
–Context switching and scheduling non-
determinism

•SMT can help but it’s not enough
–With specialized architectural support, 
overhead can be reduced to ~1500 cycles

• D. Kim, S. Liao, P. Wang, J. Cuvillo, X. Tian, X. Zou, H. Wang, D. 
Yeung, M. Gikar, and J. Shen. Physical experimentation with 
prefetching helper threads on Intel’s Hyper-Threaded 
processors. CGO 2004.



8

More Problems With Helper Threads
•Synchronization with the main thread

–Is the helper thread still helping?
–Is thread throttling and runtime 
adaptation possible?

•Are threads really a commodity?
–Shouldn’t we use threads for real 
parallelism instead?



9

Better Ideas?
• IPC for many benchmarks (e.g., SPEC INT) is low

– On VLIW architectures, it isn’t much greater than 
one-way parallelism

• Itanium 2 is a 6-issue processor with 256 registers
• With SMT (hyperthreading) used for helper threads, 

resource utilization is not a whole lot better (~2 ?)

• VLIW mentality: expose architecture
– Can a compiler embed the helper thread instructions 

within the main (host) program?

• Why not?
– PEPSE: program embedded precomputation via 

speculative execution
– Some drawbacks as you’ll see later… but there is hope



10

PEPSE Overview
• Identify precomputation chain

– For prefetching, what address to fetch from?
– Inspect program dependence graph and 

identify load dependence chain (LDC)
• Subset that computes the address



11

PEPSE Example
• “Steal” available resources to schedule the 
operations in the load dependence chain



12

PEPSE Example
• “Steal” available resources to schedule the 
operations in the load dependence chain



13

Preliminary Itanium 2 Results
• Implemented prototype algorithm in ORC 
for Itanium Processor Family

– Open-source parallelizing compiler
– Used scientific benchmark set

• SPEC FP (SPEC INT results later)
• Lots of available resources to exploit

– Compared results against
• Built-in prefetching (Mowry’s thesis)
• Software pipelining

• Compared to the best ORC baseline, PEPSE 
reduces total runtime of 9 benchmarks by 
13 minutes (27%)



14

PEPSE vs. Helper Threads
• Most significant difference: program 
counters

– Helper threads have a dedicated PC
– PEPSE is part of the main program instruction 

stream and shares the PC

• When is this a problem?
…
LD r1 = [r0] # cache miss
...
ADD r1 = r1, 4 # processor stalls
LD r2 = [r1]
...

• As long precomputation
is on-path, visible effect 
is shifting stalls to 
occur earlier in time



15

What Now?
• Precomputation must adapt

– Abandon when it appears not profitable

• Use predication
• SPEAR: sentineled precomputation for 
EPIC architectures

…
LD r1 = [r0] # cache miss
...
ADD r1 = r1, 4 # want to ignore this operation
LD r2 = [r1] # and this one
...



16

SPEAR Example

…
LD r1 = [r0] # informing load, on cache miss, p ← 1
...
ADD r1 = r1, 4 if ¬p # conditionally issue this operation
LD r2 = [r1] if ¬p # and this one
...

• Program adapts to runtime behavior
• Architecture cooperates with the program 
to provide important runtime information

– Must cheaper than threads, many ISA tricks apply

• Precomputation must adapt
– Abandon when it appears not profitable

i



17

Preliminary Results
• Implemented prototype system using 
Trimaran

– Open source compiler for VLIW research
– Cycle accurate simulator configured to 

resemble an Itanium processor
– Used SPEC INT and SPEC FP benchmarks

• As might be expected, SPEAR has little advantage 
for array codes

• In integer (pointer heavy) codes, 13% additional 
improvement over PEPSE

• Can reduce processor stalls 45% on average and 
70% or more in the best cases



18

Room To Improve
• Overlapping precomputation chains

– Reinforcement in data dependent 
precomputation

• Hybrid chains
– Investment vs. Payoff in precomputation chain

…
LD r1 = [r0] # cache miss, costs 7 cycles
...
ADD r1 = r1, 4 # wait for result
LD r2 = [r1] # issue prefetch, save 5 cycles
...



19

Room To Improve
• Overlapping precomputation chains

– Reinforcement in data dependent 
precomputation

• Hybrid chains
– Investment vs. Payoff in precomputation chain

…
LD r1 = [r0] # cache miss, wait 5 cycles
...
ADD r1 = r1, 4 # wait for result
LD r2 = [r1] # issue prefetch, save 7 cycles
...



20

Other ACE Applications
• Branch prediction

– Tackle data-dependent branches
– Hopeless for deep pipelines

• Have to precompute results 30+ cycles in advances
• Branch condition usually on the critical path

– But processors are changing
• Itanium 2 has an 8-stage pipeline
• There is hope!

• Other examples
– Address disambiguation
– Voltage scaling
– Resource allocation (wait for Dave’s talk)



21

Thanks!


